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Abstract We present a branch-and-price-and-cut algorithm for solving large-scale
instances of the multicommodity capacitated fixed-charge network design problem.
We assume good feasible solutions are already known and we focus on an efficient
algorithm for proving the optimality of the solutions. The restricted master problem
solved at each column generation iteration is obtained directly from the compact arc-
based model by considering only a subset of the commodity flow variables. The pric-
ing subproblem corresponds to a Lagrangian relaxation of the flow conservation and
capacity constraints, leaving in the Lagrangian subproblem only the strong inequali-
ties. The column generation procedure is completed by a cut generation step based on
strong inequalities. The resulting column-and-row generation procedure is embedded
within an enumerative scheme. Computational experiments on a large set of randomly
generated instances are presented and analyzed.
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56 B. Gendron, M. Larose

Introduction

In this paper, we present a branch-and-price-and-cut (B&P&C) algorithm for the mul-
ticommodity capacitated fixed-charge network design problem (MCND), an NP-hard
problem (Magnanti and Wong 1984) defined on a directed graph G = (N , A), where
N is the set of nodes and A is the set of arcs. Each commodity k ∈ K is characterized
by a demand dk > 0 to be routed from an origin O(k) to a destination D(k). On each
arc (i, j), there is a capacity ui j > 0 on the flow of all commodities circulating on the
arc (we assume ui j ≤ ∑

k∈K dk). The problem is to satisfy the demands at minimum
cost, while respecting the capacity constraints. The objective function consists of the
sum of transportation costs and fixed design costs, the latter being charged whenever
an arc is used. The transportation and fixed design costs on arc (i, j) are denoted
ci j ≥ 0 and fi j ≥ 0, respectively.

We model the MCND as a mixed-integer program (MIP) by using continuous flow
variables xk

i j that represent the amount of flow on each arc (i, j) for each commodity
k, and 0-1 design variables yi j that indicate if arc (i, j) is used or not:

min
∑

(i, j)∈A

∑

k∈K

ci j xk
i j +

∑

(i, j)∈A

fi j yi j , (1)

∑

j∈Ni (+)

xk
i j −

∑

j∈Ni (−)

xk
ji =

⎧
⎨

⎩

dk, if i = O(k),

−dk, if i = D(k), i ∈ N , k ∈ K ,

0, otherwise,
(2)

∑

k∈K

xk
i j ≤ ui j yi j , (i, j) ∈ A, (3)

xk
i j ≤ dk yi j , (i, j) ∈ A, k ∈ K , (4)

xk
i j ≥ 0, (i, j) ∈ A, k ∈ K , (5)

yi j ∈ {0, 1}, (i, j) ∈ A, (6)

where Ni (+) = { j ∈ N |(i, j) ∈ A} and Ni (−) = { j ∈ N |( j, i) ∈ A}. Equations
(2) are the flow conservation constraints for each node and each commodity. The
capacity constraints (3) ensure that the capacity on each arc cannot be exceeded,
while forbidding any flow to circulate through an arc that is not chosen as part of
the design. The so-called strong inequalities, (4), also serve the same purpose and
are, therefore, redundant; however, they significantly improve the linear programming
(LP) relaxation bounds (Crainic et al. 1999). Model (1)–(6) is the strong formulation
of the MCND, the weak formulation being obtained by removing constraints (4); their
corresponding LP relaxations are, respectively, the strong and the weak relaxations.

LP-based branch-and-bound (B&B) algorithms can be used to solve the MCND,
but instances with a large number (typically, hundreds) of commodities remain com-
putationally elusive. On the one hand, if strong inequalities are removed, the resulting
LP relaxation provides too weak lower bounds to be used within an enumerative
approach; on the other hand, if all strong inequalities are included a priori in the
model, the resulting LP relaxation is not only very large, but also highly degenerate.
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The obvious alternative is to add these valid inequalities in a dynamic way within
a cutting-plane algorithm (Chouman et al. 2011) that might also include other well-
known valid inequalities for fixed-charge network flow problems, such as cover and
flow cover inequalities. This approach has been applied successfully to other, closely
related, network design problems (Aardal 1988; Aardal et al. 1995; Atamtürk 2002;
Atamtürk and Rajan 2002; Barahona 1996; Bienstock et al. 1998; Bienstock and Gün-
lük 1996; Gabrel et al. 1999; Günlük 1999; Leung and Magnanti 1989; Magnanti et
al. 1993, 1995; Ortega and Wolsey 2003; Raack et al. 2011). The following key obser-
vations can be derived from the computational results (Chouman et al. 2011) obtained
with the cutting-plane algorithm:

• It is essential to add the strong inequalities to obtain effective lower bounds that
can be computed efficiently; more precisely, cover and flow cover inequalities can
be used instead of the strong inequalities to derive equally effective lower bounds,
but with a much greater computational effort.

• Obviously, adding cover and flow cover inequalities to the strong relaxation
improves the lower bound, but on instances with a large number of commodities
(typically, hundreds of commodities), this improvement is so small that is does not
payoff when the cutting-plane method is used within B&B.

• Many instances with a large number of commodities remain difficult to solve.

These findings motivate the development of our B&P&C algorithm: at each node of
the enumeration tree, we solve the strong relaxation by adding in a dynamic way not
only the strong inequalities, but also the flow variables. The resulting column-and-row
generation procedure, when embedded within an enumerative scheme, is able to solve
instances with a large number of commodities more efficiently than the cutting-plane
method without column generation, as we will see in Sect. 3.

Note that instances with a large number of commodities typically exhibit many arcs
(i, j) ∈ A with dk much smaller than ui j for many commodities k ∈ K . Thus, a large
number of commodities implies that the strong inequalities are more effective. A large
number of commodities is also obviously correlated with an increase in the number of
variables and constraints. Hence, as we will see in Sect. 3, the column-and-row gener-
ation method performance improves as the number of commodities increases, both in
terms of its effectiveness (because strong inequalities are then more effective), but also
in terms of its efficiency (because more commodities involve more variables and more
constraints, which are handled efficiently by the column-and-row generation method).

Other decomposition methods have been proposed for solving the MCND, in par-
ticular Benders decomposition (Costa et al. 2012, 2009) and Lagrangian-based proce-
dures (Crainic et al. 1999, 2001; Frangioni and Gorgone 2013; Gendron and Crainic
1994; Holmberg and Yuan 2000; Kliewer and Timajev 2005; Sellmann et al. 2002);
in Sect. 2.6, we examine the relationships between our approach and some of these
methods. A large number of heuristic methods have also been proposed for comput-
ing high-quality feasible solutions (Crainic et al. 2000; Crainic and Gendreau 2002;
Crainic et al. 2004; Ghamlouche et al. 2003, 2004; Hewitt et al. 2010; Katayama
et al. 2009; Rodríguez-Martín and Salazar-González 2010); in practice, near-optimal
solutions can be obtained by these heuristics, even for large-scale instances, but the
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difficulty is in assessing the quality of these solutions with effective lower bounds and
in proving optimality, which is the focus of our paper.

The paper is organized as follows. Section 2 presents the B&P&C algorithm, while
the results of experiments on a large set of randomly generated instances are reported
in Sect. 3. We conclude this paper with a discussion of future research avenues.

Branch-and-price-and-cut algorithm

In this section, we present the different components of our B&P&C algorithm: the
restricted master problem (RMP), in Sect. 2.1, the pricing subproblem, in Sect. 2.2,
the cut generation, in Sect. 2.3, and the variable fixing and branching procedures, in
Sect. 2.4. The overall algorithm is summarized in Sect. 2.5. We conclude this section
by studying the relationships between our approach and other decomposition methods
for the MCND; in particular, we show that our algorithm can be seen as a special case
of two recently proposed generic B&P&C frameworks (Frangioni and Gendron 2013;
Muter et al. 2012).

Restricted master problem

To obtain the RMP solved at each column-and-row generation iteration, we enlarge the
set of arcs with one artificial arc connecting O(k) to D(k) for each commodity k; this
arc is uncapacitated, has no fixed design cost and is given a very large transportation
cost. By adding these arcs, we ensure that every RMP is always feasible; in addition,
if, at any given node of the B&P&C tree, an optimal solution to the corresponding
strong relaxation is obtained that includes at least one artificial arc, then the node is
infeasible and therefore fathomed. We denote by A+ the set containing A along with
the artificial arcs.

To define the RMP, we associate with each arc (i, j) in A+ a commodity subset
K̃i j ⊆ K over which the existing flow variables (xk

i j for k ∈ K̃i j ) are defined (for

an artificial arc (i, j) = (O(k), D(k)), we always have K̃i j = {k}). In addition, we
define, for each commodity k, the sets Ãk = {(i, j) ∈ A+|k ∈ K̃i j }, and for each
node i and commodity k, the sets Ñ k

i (+) = { j ∈ N |(i, j) ∈ Ãk} and Ñ k
i (−) = { j ∈

N |( j, i) ∈ Ãk}. Only the strong inequalities that are generated as cuts are included
in the model; for each arc (i, j), we represent the generated strong inequalities using
a subset K i j of K̃i j . The RMP has thus the following form, where the dual variables
are shown in parentheses on the right-hand side of each constraint:

min
∑

(i, j)∈A+

∑

k∈K̃i j

ci j xk
i j +

∑

(i, j)∈A+
fi j yi j , (7)

∑

j∈Ñ k
i (+)

xk
i j −

∑

j∈Ñ k
i (−)

xk
ji =

⎧
⎨

⎩

dk, if i = O(k),

−dk, if i = D(k), i ∈ N , k ∈ K , (πk
i )

0, otherwise,
(8)

∑

k∈K̃i j

xk
i j ≤ ui j yi j , (i, j) ∈ A+, (αi j ) (9)
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xk
i j ≤ dk yi j , (i, j) ∈ A+, k ∈ K i j ⊆ K̃i j , (βk

i j ) (10)

yi j ≤ 1, (i, j) ∈ A+, (γi j ) (11)

xk
i j ≥ 0, (i, j) ∈ A+, k ∈ K̃i j , (12)

yi j ≥ 0, (i, j) ∈ A+. (13)

At the root node of the B&P&C tree, only the variables associated with the artificial
arcs are handled by the initial RMP. After solving the RMP at each column generation
iteration, flow variables with negative reduced cost are added (see Sect. 2.2) and the new
RMP is solved. This column generation process ends when there are no more flow vari-
ables with negative reduced cost. At this point, the cut generation step is performed (see
Sect. 2.3). If cuts are added, the column generation process restarts, with an initial solu-
tion derived by the dual simplex method. At subsequent nodes of the B&P&C tree, an
initial solution is also derived by the dual simplex method, considering the addition of
the branching constraint (see Sect. 2.4) to the currently available basic solution. For fur-
ther details on the development and implementation of column generation and B&P&C
algorithms, the reader is referred to the abundant literature on the topic (see for instance
Desaulniers et al. 2005; Lübbecke and Desrosiers 2005 and the references therein).

Pricing subproblem

To add flow variables with negative reduced cost to the RMP, we need to seek arcs
(i, j) ∈ A and commodities k /∈ K̃i j such that ci j − πk

i + πk
j + αi j + βk

i j < 0.
We note that the values of the dual variables are known after solving the RMP, with
the exception of the βk

i j associated with the strong inequalities (10). One simple way
of solving this issue is to simply forget about them and generate all flow variables
corresponding to arcs (i, j) ∈ A and commodities k /∈ K̃i j such that ci j − πk

i +
πk

j + αi j < 0. The resulting column generation method would still be valid, but after
every pricing iteration, potentially many flow variables with nonnegative reduced cost
could be generated, i.e., those associated with (i, j) ∈ A and k /∈ K̃i j such that
ci j −πk

i +πk
j +αi j < 0 and βk

i j ≥ −(ci j −πk
i +πk

j +αi j ). A more efficient approach

consists in computing the values of the βk
i j variables to add to the RMP only flow

variables with negative reduced cost.
To achieve this objective, we first write down the dual and the complementary

slackness conditions of the LP relaxation of model (1)–(6):

max
∑

k∈K

dk
(
πk

O(k) − πk
D(k)

)
−

∑

(i, j)∈A

γi j (14)

πk
i − πk

j − αi j − βk
i j ≤ ci j , (i, j) ∈ A, k ∈ K , (xk

i j ) (15)

ui jαi j +
∑

k∈K

dkβk
i j − γi j ≤ fi j , (i, j) ∈ A, (yi j ) (16)

αi j ≥ 0, (i, j) ∈ A, (17)

βk
i j ≥ 0, (i, j) ∈ A, k ∈ K , (18)

γi j ≥ 0, (i, j) ∈ A, (19)
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xk
i j

(
ci j − πk

i + πk
j + αi j + βk

i j

)
= 0, (i, j) ∈ A, k ∈ K (20)

yi j

(

fi j + γi j − ui jαi j −
∑

k∈K

dkβk
i j

)

= 0, (i, j) ∈ A, (21)

αi j

(

ui j yi j −
∑

k∈K

xk
i j

)

= 0, (i, j) ∈ A, (22)

βk
i j

(
dk yi j − xk

i j

)
= 0, (i, j) ∈ A, k ∈ K , (23)

γi j
(
1 − yi j

) = 0, (i, j) ∈ A. (24)

In the remainder of the paper, we use the following notation: for any (i, j) ∈ A, we
define ck

i j (π, α) ≡ ci j − πk
i + πk

j + αi j , for any k ∈ K , and fi j (α) ≡ fi j − ui jαi j .
The analysis is based on deriving reduced cost optimality conditions from (14)–(24),
for any arc (i, j) ∈ A and for all commodities k ∈ K . If k ∈ K̃i j , these conditions
are automatically satisfied, since the RMP is solved to optimality. Note that, for k ∈
K̃i j\K i j , the corresponding strong inequality is not in the RMP, which implies that
βk

i j ≡ 0, but the corresponding flow variable xk
i j is already in the RMP, so we do not

need to consider this case. The goal is to add to the RMP only the flow variables that
correspond to the commodities k /∈ K̃i j that do not satisfy the reduced cost optimality
conditions. We denote by y, x and π, α, β, γ , respectively, the optimal solutions to
the RMP and to its dual; the optimal solution to the RMP is completed in the obvious
way by setting xk

i j = 0, for any (i, j) ∈ A and all k /∈ K̃i j . For any arc (i, j), we
distinguish two cases:

• yi j > 0. Let k /∈ K̃i j ; for the solution to the RMP to be optimal for the LP relaxation
of model (1)–(6), we must have, by complementary slackness condition (23)

β
k
i j (d

k yi j
︸ ︷︷ ︸

> 0

− xk
i j

︸︷︷︸
= 0

) = 0 �⇒ β
k
i j = 0.

The reduced cost optimality condition for k /∈ K̃i j is therefore ck
i j (π, α) ≥ 0, which

implies that we add to the RMP the flow variables associated with arc (i, j) and
commodity k /∈ K̃i j such that ck

i j (π, α) < 0.

• yi j = 0. In this case, we have xk
i j = 0 for all k ∈ K and

γ i j (1 − yi j
︸ ︷︷ ︸

	= 0

) = 0 �⇒ γ i j = 0.

For the solution to the RMP to be optimal for the LP relaxation of model (1)–(6),
we, therefore, must have, by the dual constraints (16), the following reduced cost
optimality conditions:

fi j (α) ≥
∑

k∈K

dkβ
k
i j .
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By the dual constraints (15) and (18), we must have β
k
i j ≥ max{0,−ck

i j (π, α)} for
any k ∈ K . This implies that we add to the RMP the flow variables associated with
arc (i, j) such that

fi j (α) <
∑

k∈K

dk max{0,−ck
i j (π, α)},

but only for commodities k /∈ K̃i j such that ck
i j (π, α) < 0.

To summarize, the pricing subproblem consists in performing the following tests
for all arcs (i, j):

1. If yi j > 0, then for any k /∈ K̃i j such that ck
i j (π, α) < 0, we add the flow variables

xk
i j to the RMP.

2. If yi j = 0 and fi j (α) <
∑

k∈K dk max{0,−ck
i j (π, α)}, then for any k /∈ K̃i j such

that ck
i j (π, α) < 0, we add the flow variables xk

i j to the RMP.

Cut generation

To solve the RMP at each column generation iteration, one option is to add a priori
all the strong inequalities (10). However, as mentioned in the “Introduction”, it is
more efficient to add them in a dynamic way. In particular, the separation problem
is trivial: for each arc (i, j), we generate the strong inequalities for all commodities
k ∈ K̃i j such that xk

i j > dk yi j . The addition of the corresponding constraints makes
the current primal basic solution infeasible, so the dual simplex method is performed
until a feasible primal solution is obtained. The column generation procedure is then
restarted. Cut generation is performed after the column generation procedure, when
no more flow variables with negative reduced cost can be found.

Variable fixing and branching

At any node of the B&P&C algorithm, we apply reduced cost variable fixing at each
iteration of the cut generation procedure. The technique is well known (Savelsbergh
1994): given the current LP relaxation lower bound Zl and the best-known upper
bound Z∗, we test, for each arc (i, j), if Zl + | f i j | ≥ Z∗, in which case we can fix

yi j to yi j , where f i j = fi j − ui jαi j − ∑
k∈K dkβ

k
i j .

To show the validity of this test, first note that if 0 < yi j < 1, then f i j = 0 by com-
plementary slackness conditions (21) and (24), which implies that Zl + | f i j | = Zl <

Z∗; otherwise, the current node could be fathomed. Then, there are two remaining
cases:

• yi j = 0. By complementary slackness condition (24), we have γ i j = 0. Assume
we add the constraint yi j ≥ 1 with which we associate a dual variable λi j ≥ 0
that is added to the objective (+λi j ). The dual constraint (16) is then rewritten as
λi j ≤ fi j − ui jαi j − ∑

k∈K dkβk
i j . A dual feasible solution is obtained by setting
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λi j = f i j , which implies that Zl + f i j is a lower bound on the problem obtained
by adding the constraint yi j ≥ 1. Therefore, if Zl + f i j = Zl + | f i j | ≥ Z∗, we
necessarily have yi j < 1, i.e., yi j = 0.

• yi j = 1. By the objective of the dual (14) and the dual constraints (16) and (19),
we have γ i j = max{0,− f i j }. Assume we add the constraint yi j ≤ 0 with which
we associate a dual variable μi j ≥ 0. The dual constraint (16) is then rewritten as
−μi j − γi j ≤ fi j − ui jαi j − ∑

k∈K dkβk
i j . A dual feasible solution is obtained

by setting μi j = − f i j and γi j = 0, which implies that Zl − f i j is a lower
bound on the problem obtained by adding the constraint yi j ≤ 0. Therefore, if
Zl − f i j = Zl + | f i j | ≥ Z∗, we necessarily have yi j > 0, i.e., yi j = 1.

The column-and-row generation procedure is performed until the node is fathomed
or no more cuts can be generated. In the latter case, branching is performed. At each
node, the LP relaxation of model (1)–(6), with the addition of the variable fixing
and branching constraints, is solved by the column-and-row generation procedure.
Branching occurs only when Zl < Z∗, a condition that implies that the LP optimal
solution is fractional, i.e., there exists at least one arc (i, j) such that 0 < yi j < 1
(otherwise, the LP optimal solution is feasible and if its value, Zl , is less than Z∗, it
replaces it as the best incumbent value). In this case, we select one such arc and create
the two nodes with the added branching constraints yi j = 0 and yi j = 1. To select
the branching variable, we use reliability branching (as implemented in the SCIP
library Achterberg 2009), certainly one of the most efficient branching rule available
in general-purpose LP-based B&B MIP solvers (our preliminary tests have confirmed
this assessment). Reliability branching is similar to the classical pseudocost branching
rule, except that a candidate variable (with a fractional value in the LP relaxation) is
declared “unreliable” if the number of computations of objective gains obtained by
branching on this variable is “too small,” as measured by the so-called reliability
parameter. When a variable is “unreliable,” the gains in the objective when branching
on this variable are computed by solving approximately the resulting LP relaxations
with a limited number of dual simplex iterations, as in the strong branching rule. For
more details on LP-based B&B branching rules, see (Achterberg et al. 2005).

Summary of the algorithm

The algorithm is outlined as follows (the steps are commented below):

1. Initialize the upper bound Z∗ and the incumbent solution.
2. Initialize the node pool L with the root node.
3. Selection Select the next node to evaluate in L and remove it from L.
4. Lower bound Solve the LP relaxation at the current node:

(a) Find a pair of primal-dual solutions y, x and π, α by solving the RMP with the
dual simplex method.
Column generation:

(b) Pricing For each arc (i, j), if
yi j > 0 or (yi j = 0 and fi j (α) <

∑
k∈K dk max{0,−ck

i j (π, α)}), then

for any k /∈ K̃i j such that ck
i j (π, α) < 0, add the flow variables xk

i j to the RMP.
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(c) If flow variables were added to the RMP, solve the new RMP by the primal
simplex method to obtain a pair of primal-dual solutions y, x and π, α; go to
step 4b.

(d) Let Zl be the lower bound obtained after the column generation procedure; if y
is integer and Zl < Z∗, then let Z∗ = Zl and store y, x as the new incumbent
solution.

(e) If Zl ≥ Z∗, then go to step 6.
Cut generation:

(f) Separation For each arc (i, j) and for any k ∈ K̃i j such that xk
i j > dk yi j , add

the corresponding strong inequalities to the RMP.
(g) If strong inequalities were added to the RMP:

i. Solve the new RMP by the dual simplex method to obtain a solution y, x
and a lower bound Zl .

ii. If y is integer and Zl < Z∗, then let Z∗ = Zl and store y, x as the new
incumbent solution.

iii. If Zl ≥ Z∗, then go to step 6.
iv. Variable fixing: For each arc (i, j), if Zl + | f i j | ≥ Z∗, then fix yi j to yi j ;

if some variables were fixed, go to step 4a.
v. Go to step 4b.

5. Branching If Zl < Z∗, perform branching to generate two child nodes inserted
in L.

6. If L = ∅, stop the algorithm; otherwise, go to step 3.

In step 1, a feasible solution and an upper bound is obtained by any heuristic
method to solve the MCND. As mentioned in the Introduction, there are several effec-
tive heuristic approaches that identify near-optimal solutions, even for large-scale
instances. In step 2, the pool of B&P&C nodes, noted L, is initialized with the root
node. In step 3, the next node to evaluate is selected and removed from L. From our
computational results, we recommend the best-first selection rule (see Sect. 3; for more
details on B&B node selection rules, see for instance Achterberg 2009; Atamtürk and
Savelsbergh 2005; Ibaraki 1988). Step 4 contains the details of the column-and-row
generation procedure used at each node. The goal of step 4a is to find an initial pair
of primal-dual solutions to start the column generation procedure. At the very begin-
ning, artificial arcs are added and flow is sent along these arcs, while subsequently,
the dual simplex method is performed to take into account the effect of the additional
constraints derived by variable fixing and branching. Step 4b implements the solution
of the pricing subproblem to add flow variables with negative reduced cost to the RMP.
In case new flow variables have been added to the RMP, the next column generation
iteration proceeds; otherwise, the column generation procedure has converged, which
allows to identify a lower bound Zl . Steps 4d and 4e are the incumbent update and
the lower bound test, respectively, to be performed after the column generation pro-
cedure. The separation problem for strong inequalities is then solved in step 4f. If
strong inequalities have been generated, the RMP with the added cuts is solved by the
dual simplex method in step 4(g)i, followed by the incumbent update and the lower
bound test in steps 4(g)ii and 4(g)iii, then by variable fixing in step 4(g)iv, after which
the control is transferred to the column generation procedure. In case no more strong
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inequalities have been generated, the column-and-row generation procedure stops.
Finally, step 5 performs the branching operation and step 6 verifies the termination of
the B&P&C algorithm, i.e., the node pool L is empty; we can also stop the algorithm
when a time limit has been reached.

Relationships to other decomposition methods

In this section, we discuss the relationships between our B&P&C algorithm for the
MCND and other decomposition methods, both specific to the MCND and general
ones. We first consider the Lagrangian relaxation with respect to the flow conserva-
tion equations (2) and the capacity constraints (3), where we associate with each set
of constraints, Lagrange multipliers π and α ≥ 0, respectively. To the best of our
knowledge, this particular Lagrangian relaxation has not been studied in the literature
on the MCND. The corresponding Lagrangian subproblem decomposes by arc and can
be written as follows, for each arc (i, j) (recall that ck

i j (π, α) ≡ ci j − πk
i + πk

j + αi j ,
for any k ∈ K , and fi j (α) ≡ fi j − ui jαi j ):

Zi j (π, α) = min
∑

k∈K

ck
i j (π, α)xk

i j + fi j (α)yi j (25)

0 ≤ xk
i j ≤ dk yi j , k ∈ K , (26)

yi j ∈ {0, 1}. (27)

The associated Lagrangian dual is

max
π,α≥0

∑

k∈K

dk
(
πk

O(k) − πk
D(k)

)
+

∑

(i, j)∈A

Zi j (π, α). (28)

To solve the Lagrangian subproblem, we consider the two possibilities, yi j = 0
and yi j = 1. If yi j = 0, the only feasible solution is to set all flow variables to 0, with
an objective function value equal to 0. If yi j = 1, an optimal solution is obtained by
setting xk

i j = dk , if ck
i j (π, α) < 0, and xk

i j = 0, otherwise; the corresponding objective

function value is
∑

k∈K − max{0,−ck
i j (π, α)}dk + fi j (α). An optimal solution is

obtained by selecting the alternative with the smallest objective function value; thus,
the structure of an optimal solution ỹ, x̃ to the Lagrangian subproblem for arc (i, j) is

ỹi j =

⎧
⎪⎨

⎪⎩

1, if
∑

k∈K − max{0,−ck
i j (π, α)} < 0,

0, if
∑

k∈K − max{0,−ck
i j (π, α)} > 0,

0 or 1, otherwise,

(29)

x̃ k
i j =

⎧
⎪⎨

⎪⎩

dk, if ỹi j = 1 and ck
i j (π, α) < 0,

0, if ỹi j = 0 or (ỹi j = 1 and ck
i j (π, α) > 0), k ∈ K .

0 or dk, otherwise,

(30)

Proposition 1 The solution to the pricing subproblem presented in Sect. 2.2 corre-
sponds to one of these optimal solutions for π = π and α = α, in the sense that a
flow variable xk

i j is added to the RMP when this optimal solution satisfies x̃k
i j = dk.

123



Branch-and-price-and-cut for large-scale multicommodity capacitated fixed-charge 65

Proof Consider first the case yi j > 0. We then have, for any k ∈ K , β
k
i j =

−ck
i j (π, α) ≥ 0 if xk

i j > 0, or β
k
i j = 0 if xk

i j = 0, by complementary slackness

conditions (20) and (23); this implies that β
k
i j = max{0,−ck

i j (π, α)}. By complemen-
tary slackness condition (21), it follows that

fi j (α) =
∑

k∈K

dkβ
k
i j − γ i j

=
∑

k∈K

dk max{0,−ck
i j (π, α)} − γ i j

≤
∑

k∈K

dk max{0,−ck
i j (π, α)}.

Therefore, when yi j > 0, an optimal solution to the corresponding Lagrangian sub-
problem with π = π and α = α is ỹi j = 1 and, for any k ∈ K , x̃ k

i j = dk , if

ck
i j (π, α) < 0, and 0, otherwise.

Now, consider the case yi j = 0; an optimal solution to the corresponding
Lagrangian subproblem with π = π and α = α is 1) ỹi j = 1, if fi j (α) <∑

k∈K dk max{0,−ck
i j (π, α)} and, for any k ∈ K , x̃ k

i j = dk , if ck
i j (π, α) < 0, and 0,

otherwise; or 2) ỹi j = 0, if fi j (α) ≥ ∑
k∈K dk max{0,−ck

i j (π, α)} and x̃ k
i j = 0, for

all k ∈ K .
In both cases, we conclude that the pricing subproblem is equivalent to solving the

Lagrangian subproblem with π = π and α = α. �
Thus, the column-and-row generation procedure can be interpreted as a solution

method for the Lagrangian dual (28), where the Lagrange multipliers are obtained
by solving the restricted master problem (7)–(13). While this approach is similar to
Dantzig–Wolfe (DW) decomposition, it is fundamentally different, in that DW decom-
position is based on a reformulation of the problem in terms of the (exponentially many)
extreme points of the convex hull of the feasible solution set to the Lagrangian sub-
problem. Our column-and-row generation procedure is in fact a special case of the
structured DW (SDW) decomposition framework presented in Frangioni and Gendron
(2013), which encompasses DW decomposition by allowing other reformulations than
the standard DW one. The network design example used to illustrate the SDW decom-
position in Frangioni and Gendron (2013) is based on reformulating general integer
variables with binary variables, thus increasing the size of the variable space from a
polynomial number to a pseudo-polynomial number. In contrast, our application of
SDW to the MCND is working on the same formulation as the original one, i.e., the
“reformulation” is the original formulation itself, which has a polynomial number of
variables.

Our column-and-row generation procedure can also be seen as a special case of
the framework presented in Muter et al. (2012) for solving large-scale LPs with so-
called column-dependent-rows, which are linking constraints (between two types of
variables) that are “too many” to be included in the model directly or that can only be
known when all variables are explicitly generated. Clearly, the strong inequalities (4)

123



66 B. Gendron, M. Larose

correspond to the first category of column-dependent-rows, since they are linking the
flow and the design variables, and they are “too many”, although not exponentially
many, as in most applications presented in Muter et al. (2012).

The Lagrangian interpretation of our column-and-row generation procedure allows
us to clarify its relationships to existing Lagrangian methods for the MCND. These
methods are based on two different Lagrangian relaxations: the so-called shortest path
(or flow) and knapsack relaxations. The first one relaxes both the capacity constraints
(3) and the strong inequalities (4), leading to a Lagrangian subproblem that decom-
poses into a set of shortest path problems for each commodity and a problem in y
variables solvable by inspection (Crainic et al. 1999, 2001; Frangioni and Gorgone
2013; Gendron and Crainic 1994). The second Lagrangian approach relaxes the flow
conservation equations (2); the corresponding Lagrangian subproblem decomposes
by arc and, for each arc, it consists in solving a continuous knapsack problem (Crainic
et al. 1999, 2001; Gendron and Crainic 1994; Holmberg and Yuan 2000; Kliewer and
Timajev 2005; Sellmann et al. 2002). In all these references, the Lagrangian dual is
solved either by a subgradient approach or by a bundle method, which is a generalized
form of DW decomposition, where the master problem is “stabilized” with the addition
of a convex (usually quadratic) term to the objective function (Frangioni 2005). Thus,
our column-and-row generation procedure differs from the existing Lagrangian meth-
ods in two aspects: first, both the flow conservation equations (2) and the capacity
constraints (3) are relaxed, so the resulting Lagrangian subproblem differs signifi-
cantly from the shortest path relaxation, while it is similar to the knapsack relaxation,
but simpler, since it does not contain the capacity constraints; second, the Lagrangian
dual is solved by the column-and-row generation procedure, not by subgradient or
bundle methods. It is noteworthy that the master problem used in bundle methods can
be seen as a generalized form of the standard DW reformulation, with exponentially
many variables, while the master problem in our approach is nothing but the original,
compact, formulation.

Column(-and-row) generation methods for multicommodity flow problems are
often identified with the classical path-based model, where flow variables are rep-
resented by paths between each O-D pair. In fact, for the MCND, the DW master
problem associated with the shortest path relaxation corresponds to the path-based
model; thus, solving the associated Lagrangian dual by a bundle method implicitly
makes use of the path-based formulation. The path-based model has also been used for
solving the multicommodity flow subproblems derived from fixing the design variables
(Kliewer and Timajev 2005; Sellmann et al. 2002), but also in sophisticated heuristic
methods (Crainic et al. 2000; Katayama et al. 2009). In particular, the column-and-row
generation procedure embedded in the capacity scaling approach of Katayama et al.
(2009) is similar to ours, in that it uses a cutting-plane procedure to generate strong
inequalities, but is also different, since the flow variables are represented by paths, not
by arcs as in our approach.

In this Section, we have highlighted three interesting features of our method:

• It can be seen as a Lagrangian relaxation method, where the Lagrangian subprob-
lem results from relaxing the flow conservation and the capacity constraints, a
Lagrangian relaxation that has not been studied before.
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• It is a special (simple) case of structured Dantzig-Wolfe decomposition, a frame-
work recently presented in Frangioni and Gendron (2013).

• It is different from the other column generation methods proposed for similar
problems, which use path-based models and can be seen as standard Dantzig-
Wolfe decomposition applied to the shortest path relaxation.

Computational results

This section presents computational results obtained by the B&P&C algorithm on a
publicly available set of 196 instances (the so-called “Canad” instances, see Frangioni
2014) used in several papers on the MCND (for instance) and described in detail
in Crainic et al. (2001). These problem instances consist of general transshipment
networks with one commodity per origin-destination and no parallel arcs. Associated
with each arc are three positive quantities: the capacity, the transportation cost and
the fixed design cost. These instances are characterized by various degrees of capacity
tightness, with regard to the total demand, and importance of the fixed design cost,
with respect to the transportation cost.

The instances are divided into three classes. Class I (the “C” instances in Frangioni
2014) consists of 31 problem instances with many commodities compared to the
number of nodes, while Class II (the “C+” instances in Frangioni 2014) contains 12
problem instances with few commodities compared to the number of nodes. Class
III (the “R” instances in Frangioni 2014) is divided into two categories, A and B,
each containing nine sets of nine problem instances each. Each set is characterized
by the numbers of nodes, arcs, and commodities, which are the same for the nine
instances, and by instance-specific levels of capacity tightness and importance of
the fixed design cost. Class III-A (instances “R01” to “R09”) contains 72 small size
problem instances with 10 nodes (nine infeasible instances have been discarded), while
Class III-B (instances “R10” to “R18”) contains 81 medium to large size instances
with 20 nodes. Table 1 gives the size of the instances in each class.

Table 1 Classes and problem dimensions (number of instances in parentheses)

Class I (31) Class II (12) Class III-A (72) Class III-B (81)
|N |, |A|, |K | |N |, |A|, |K | |N |, |A|, |K | |N |, |A|, |K |
20, 230, 40 (3) 25, 100, 10 (3) 10, 35, 10 (6) 20, 120, 40 (9)

20, 230, 200 (4) 25, 100, 30 (3) 10, 35, 25 (6) 20, 120, 100 (9)

20, 300, 40 (4) 100, 400, 10 (3) 10, 35, 50 (6) 20, 120, 200 (9)

20, 300, 200 (4) 100, 400, 30 (3) 10, 60, 10 (9) 20, 220, 40 (9)

30, 520, 100 (4) 10, 60, 25 (9) 20, 220, 100 (9)

30, 520, 400 (4) 10, 60, 50 (9) 20, 220, 200 (9)

30, 700, 100 (4) 10, 85, 10 (9) 20, 320, 40 (9)

30, 700, 400 (4) 10, 85, 25 (9) 20, 320, 100 (9)

10,85,50 (9) 20, 320, 200 (9)
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The B&P&C method is compared against two competitors: a state-of-the-art MIP
solver, CPLEX (version 12.3), and the B&C algorithm obtained by performing, at
each node of the B&C tree, a cutting-plane procedure that includes only the strong
inequalities as cuts. Each competing method is tested to verify two hypotheses: 1) the
B&P&C algorithm is competitive with a state-of-the-art MIP solver; 2) the column-
and-row generation procedure is at least as efficient as the cutting-plane procedure,
and more efficient on large-scale instances with many commodities (in the order of
100). The initial model given to CPLEX is the weak formulation, i.e., model (1)–
(6) without the strong inequalities (4), since including these inequalities in advance
would give very poor performance. CPLEX then generates its own cuts. Both the B&C
and the B&P&C algorithms are implemented in C++ using the SCIP library, version
2.0.2 (Achterberg 2009); we use the B&B implementation of SCIP without heuristics
and separators, with CPLEX (version 12.3) used as the LP solver. In both B&C and
B&P&C, we use reliability branching, as implemented in SCIP, while CPLEX uses its
own default branching rule. All experiments are performed on an Intel Xeon X5660
operating at 2.80 GHz under the Linux operating system.

The goal of our experiments is to evaluate the performance of the B&P&C algorithm
in providing effective lower bounds; in particular, we wish to evaluate the efficiency of
the algorithm for proving the optimality of an already known optimal solution. Thus,
for both the B&P&C method and its competitors, we give as initial incumbent the best
known feasible solution for each problem instance, which is an optimal one for most
of them. When performing CPLEX, we consequently deactivate all features related
to the computation of feasible solutions. For all methods, we fix a “reasonable” CPU
time limit of 3 h.

We first look at the results obtained at the root node. CPLEX delivers better lower
bounds than the strong relaxation bound computed by B&C and B&P&C, because
CPLEX can generate a large number of cuts of different types. It is interesting to
assess the quality of the strong relaxation for various types of instances; thus, for
each problem instance, we measure the gap between the strong relaxation bound and
CPLEX lower bound. We are also interested in assessing the efficiency of the three
bounding methods, the cutting-plane procedure in CPLEX, the cutting-plane approach
that generates only the strong inequalities and our column-and-row generation method;
we therefore measure the CPU times obtained by the three methods. The average
results for each class of problem instances are presented in Table 2; performance
measures are computed for each instance and their arithmetic averages are computed
over all instances in a given class. Column “Class” corresponds to the class of problem
instances; column “Method” relates to the three methods, CPLEX, B&C and B&P&C;
column “Gap” provides the average relative gap between the strong relaxation bound
and CPLEX lower bound, which is the best of the two for all problem instances
(the relative gap is the difference between the two bounds divided by CPLEX lower
bound); column “CPU” gives the average CPU time in seconds for each method;
finally, column “CPU gain” displays the average relative gain in CPU time obtained
by B&C and B&P&C over CPLEX (the relative gain in CPU time is the difference
between the two CPU times divided by CPLEX CPU time).

These results show that the strong relaxation bound is very close (within 1% on
average) to the lower bound computed by CPLEX for problem instances in Classes
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Table 2 Comparison of the
methods at the root node

Class Method Gap (%) CPU (s) CPU
gain (%)

I CPLEX 0 26.2 0

B&C 0.2 23.3 11

B&P&C 0.2 6.3 76

II CPLEX 0 2.3 0

B&C 2.5 0.6 74

B&P&C 2.5 0.6 74

III-A CPLEX 0 0.09 0

B&C 0.9 0.02 77

B&P&C 0.9 0.02 77

III-B CPLEX 0 6.3 0

B&C 0.2 5.4 14

B&P&C 0.2 2.6 59

I, III-A and III-B. For Class II, the average gap between the strong relaxation bound
and CPLEX attains 2.5%. This is consistent with the results reported in Chouman
et al. (2011), who show that other inequalities than the strong ones, namely cover
and flow cover inequalities, are really useful only for instances in Class II, providing
only minor improvements for instances in the other classes. Note that, while Class
II instances have few commodities (no more than 30), most instances in Classes I
and III-B have many commodities (at least 100). For these two classes, the strong
relaxation bound and CPLEX lower bound are almost equal, with an average gap of
0.2%; the CPU times, however, are significantly different: while the average relative
gain for B&C is relatively modest (slightly more than 10%), it reaches more than
60% for B&P&C. These results are promising for the B&P&C algorithm, since they
suggest significant gains in efficiency for instances in Classes I and III-B, especially
for large-scale instances with hundreds of commodities. We verify this hypothesis in
the remainder of this section.

To analyze the performance of the different approaches when branching is per-
formed and the enumeration trees are explored, we examine the impact of two clas-
sical selection rules, best-first and depth-first. Although there are other B&B node
selection rules (Achterberg 2009; Atamtürk and Savelsbergh 2005), these alternative
rules are mostly designed to balance the effort between finding good feasible solutions
and improving the lower bounds. Since we assume we start the enumeration with a
very good (optimal on many instances) solution, we focus only on the two classical
selection rules. In general, for any B&B algorithm, the best-first search selection rule
provides reliable results, independently of the problem instance being tested, since
it displays two interesting features: (1) when the algorithm proves the optimality of
the solution within the time limit, the total number of nodes is generally smaller than
with other selection rules (Ibaraki 1988); (2) otherwise, if the algorithm is stopped
prematurely without proving the optimality of the solution, the lower bound is gener-
ally tighter than with other selection rules, since best-first search focuses the search
on improving the lower bound (Atamtürk and Savelsbergh 2005). The first advantage
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Table 3 Results on “Easy”
instances (number of instances
in parentheses)

Class Method CPU (s) Nodes Variables

I (12) CPLEX-depth 845 1,487 28,942

CPLEX-best 1,204 1,487 28,942

B&C-depth 1,017 1,657 29,031

B&C-best 1,013 1,756 29,031

B&P&C-depth 474 2,352 6,692

B&P&C-best 419 2,062 6,662

II (8) CPLEX-depth 26 630 2676

CPLEX-best 30 627 2,676

B&C-depth 327 6,080 2,693

B&C-best 322 5,767 2,693

B&P&C-depth 687 7,966 1,573

B&P&C-best 496 5,870 1,557

III-A (72) CPLEX-depth 2 213 1,822

CPLEX-best 2 215 1,822

B&C-depth 2 285 1,850

B&C-best 3 303 1,850

B&P&C-depth 2 421 745

B&P&C-best 3 396 743

III-B (60) CPLEX-depth 766 3,516 19,409

CPLEX-best 1,051 3,507 19,409

B&C-depth 1,114 1,5874 19,510

B&C-best 1,213 15,926 19,510

B&P&C-depth 901 21,131 7,739

B&P&C-best 855 16,829 7,733

vanishes, however, under two conditions: (a) the initial incumbent is an optimal solu-
tion; (b) branching and bounding operations provide the same output, irrespective of
the selection rule; indeed, under conditions (a) and (b), the total number of nodes is
the same, independently of the selection rule (Ibaraki 1988). Thus, when the initial
incumbent is close to an optimal solution, as in our experiments, other selection rules
become interesting alternatives to best-first search. In particular, depth-first search
has one advantage, when compared to best-first search: it performs less backtracks,
which implies faster reoptimization (Atamtürk and Savelsbergh 2005). Therefore, we
have tested the two selection rules, best-first and depth-first, for the three approaches,
CPLEX, B&C and B&P&C.

The performance analysis depends on the results obtained by the resulting six
methods for each problem instance. Table 3 presents the results obtained for the “Easy”
instances, which are those that are solved to optimality by the six methods, within the
CPU time limit of 3 h. Column “Class” corresponds to the class of problem instances;
column “Method” relates to the six methods that result in combining CPLEX, B&C
and B&P&C with depth-first and best-first; columns “CPU”, “Nodes” and “Variables”
display for each method, respectively, the average CPU time in seconds, the total
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number of nodes and the number of variables in the models. In this table and the
next ones, the number of variables corresponds to the number of variables in the
model when the execution stops, since we manipulate a single model throughout the
whole execution and do not eliminate any variables during the execution. Note that
the slight difference in the number of variables between CPLEX and B&C is due to
the addition of the artificial variables in the B&C models, which follows the B&P&C
implementation without the column generation step.

These results show that depth-first search performs better than best-first search when
used with CPLEX. Indeed, since CPLEX generates cuts only at the root node of the tree,
the LP relaxations solved by CPLEX during the B&B enumeration are very similar,
irrespective of the selection rule used. The assumption that branching and bounding
operations provide the same output, irrespective of the selection rule, is then verified,
which is confirmed by the fact that the number of nodes is almost the same for the two
selection rules. Because depth-first search performs less backtracks, reoptimization
is faster and the CPU times are better for depth-first search. For B&C and B&C&P,
the situation is different, since the LP relaxations solved during the enumeration vary
significantly depending on the selection rule, because of the continuous addition of cuts
and columns during the course of the enumeration. For B&C, the two selection rules
give similar results, while for B&P&C, best-first search emerges as a clear winner.

For Class I instances, B&P&C-best is clearly better than any variant of CPLEX
and B&C; even though the total number of nodes is larger for B&P&C-best, the small
number of variables generated by the method (four times less than the others) more than
compensates, translating into an overall algorithm that is about two times faster than
the others, on average. For Class II instances, the situation is completely different:
the significantly better lower bounds computed by CPLEX lead to an enumerative
approach that is an order of magnitude faster than B&C and B&P&C. In addition,
the reduction in the number of variables does not payoff this time, since B&P&C is
slower than B&C. For Class III-A instances, all methods are equally efficient with
average CPU times around 2 seconds. Finally, for Class III-B instances, B&P&C-best
is competitive with CPLEX: it is slightly slower than CPLEX-depth, but faster than
CPLEX-best. As observed for Class I instances, the large number of nodes incurred
by B&P&C is more than compensated by the small number of variables generated by
the method. Overall, these results point to the conclusion that B&P&C performs well
for problem instances with hundreds of commodities.

To verify this hypothesis, we focus on the “Easy” instances with at least 100 com-
modities, which are all taken from Classes I and III-B. Table 4 presents the average
results obtained on these instances; the columns have the same meanings as in Table 3.
On these 41 instances, we see that the total number of nodes is slightly increased when
B&P&C-best is performed, compared to CPLEX and B&C methods, but that the CPU
time is better, due to the fact that the number of variables is about three times less.

Next, we look at the results obtained with the “Difficult” instances, which are those
that are not solved by any of the six methods, within the 3-h CPU time limit. Table
5 presents the results obtained for these instances. Only the best-first search variants
of the methods are presented, since depth-first search is not competitive in this case.
Indeed, because the enumeration is stopped within the time limit without proving
optimality, any selection rule that tends to explore the trees in a breadth-first manner,
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Table 4 Results on large-scale
“Easy” instances (number of
instances in parentheses)

Instances Method CPU (s) Nodes Variables

|K | ≥ 100 (41) CPLEX-depth 1,246 3,150 29,983

CPLEX-best 1,733 3,020 29,983

B&C-depth 1,580 2,847 30,128

B&C-best 1,669 2,826 30,128

B&P&C-depth 1,087 3,722 11,024

B&P&C-best 1,015 3,317 11,013

Table 5 Results on “Difficult”
instances (number of instances
in parentheses)

Class Method Gap (%) Nodes Variables

I (16) CPLEX-best 0.9 6,792 130,563

B&C-best 0.9 3,545 130,805

B&P&C-best 0.7 14,640 30,364

II (2) CPLEX-best 3.2 16,517 8,401

B&C-best 7.2 429,172 8,420

B&P&C-best 7.7 169,185 6,790

III-B (17) CPLEX-best 1.3 9,900 44,966

B&C-best 1.4 10,280 45,123

B&P&C-best 1.3 18,550 22,353

like best-first search does, would deliver final lower bounds that are tighter than those
obtained by depth-first search. Thus, in column “Method”, we show only the three
methods, CPLEX, B&C and B&P&C with best-first search; columns “Gap”, “Nodes”
and “Variables” display for each method, respectively, the average gap in percentage
between the lower and the upper bounds, the total number of nodes and the number
of variables in the formulations.

For instances in Classes I and III-B, B&P&C-best provides slightly better lower
bounds and final gaps, on average, than the other approaches. Indeed, within the 3-h
time limit, the method explores about twice the number of nodes than CPLEX does,
which explains why the final gaps are smaller, in spite of the slightly less tight lower
bounds computed at the root node. The small number of generated variables explains
the efficiency of the B&P&C method: the number of variables is roughly divided by
four for Class I instances and by two for Class III-B instances. For Class II instances,
CPLEX-best outperforms the other methods because of the quality of its lower bounds,
which is reflected in the final gaps. This is in spite of the fact that CPLEX-best explores
much less nodes (an order of magnitude less) than the other methods. B&C-best is
more efficient than B&P&C-best for these instances, since it is able to explore three
times the number of nodes and to reduce the final gaps. Again, these results suggest
that B&P&C performs well on instances with hundreds of commodities.

In Table 6, we focus on “Difficult” instances with at least 100 commodities, which
are all taken from Classes I and III-B; the columns have the same meanings as in Table
5. On these 31 instances, we see that the final gap is slightly better when B&P&C-best
is performed, compared to CPLEX-best and B&C-best, given that the total number of
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Table 6 Results on large-scale
“Difficult” instances (number of
instances in parentheses)

Instances Method Gap (%) Nodes Variables

|K | ≥ 100 (31) CPLEX-best 1.1 6,065 91,215

B&C-best 1.2 4,004 91,424

B&P&C-best 1.0 12,235 27,390

nodes explored within the 3-hour time limit is significantly increased with B&P&C-
best: two times more than CPLEX-best and three times more than B&C-best. The
number of variables in the models is roughly divided by three when B&P&C is used.

In addition to the “Easy” and “Difficult” instances, there are nine other instances that
are solved by at least one, but not all methods, within the 3-h CPU time limit. Of these
nine instances, CPLEX-depth is able to solve to optimality seven of them, B&C-depth
two of them and B&P&C-depth three of them. Among these three instances solved
by B&P&C-depth, two of them are large-scale Class I instances that cannot be solved
by CPLEX-depth. These results confirm the efficiency of the B&P&C algorithm for
solving large-scale instances with hundreds of commodities.

Conclusions

In this paper, we have presented a B&P&C algorithm for the multicommodity capac-
itated fixed-charge network design problem. The RMP solved at each column gener-
ation iteration is obtained directly from the compact arc-based model by considering
only a subset of the commodity flow variables. The pricing subproblem corresponds
to a Lagrangian relaxation of the flow conservation and capacity constraints, leav-
ing in the Lagrangian subproblem only the strong inequalities. A cut generation step
based on strong inequalities is also performed. The resulting column-and-row gener-
ation procedure is embedded within an enumerative scheme, giving rise to the overall
B&P&C algorithm. Our computational experiments show that the B&P&C performs
well on large-scale instances with hundreds of commodities. On such instances, the
B&P&C algorithm is generally more efficient than a state-of-the-art MIP solver and
a B&C algorithm that does not incorporate column generation.

We have explored the relationships between our B&P&C algorithm and other
decomposition methods for the problem. Although we have clearly shown the interest
of our method by comparing it to a state-of-the-art MIP solver and a B&C algorithm,
it would be interesting to perform an extensive analysis of the relative performance of
the B&P&C algorithm when compared to other decomposition approaches, in partic-
ular Lagrangian-based methods. As mentioned in Sect. 2.6, our algorithm is a special
case of the structured Dantzig–Wolfe framework, which has been applied to another
multicommodity network design problem Frangioni and Gendron (2013). It would be
interesting to extend the approach further to other network design formulations.
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